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AblUact-The rate of heat loss from a body surrounded by a layer of homogeneous insulation is minimised
by use of the Calculus of Variations.

This optimisation is with respect to variation of the outer surface of the insulation layer, subject to the
isoperimetric constraint that its volume remains fixed.

Both Dirichlet and mixed boundary conditions for the temperature field on the outer surface are
considered. Regular perturbation solutions in the case of small layer thickness are presented.

I. INTRODUCTION

This paper is concerned with the rate of heat loss Q from the surface 5. of a body B through a
layer of homogeneous insulation occupying a hollow domain D surrounding B. Thus the inner
surface of D is 5" while 52 is defined as the outer surface of D. The optimisation problem
investigated is that of minimising Q by variation of 52 subject to the constraint that the total
volume of D remains fixed. Dirichlet boundary conditions for the temperature field are imposed
on 5" while on 52 both Dirichlet and mixed boundary conditions are considered.

The same type of isoperimetric problem has been studied previously. Banichuk[l] and
Curtis and Walpole [2] considered the optimisation of elastic bars and shafts in torsion, and
Mironov [3] 'studied the minimisation of the drag on a body in viscous fluid flow by variation of
its shape. In this last problem the non self-adjoint nature of the Navier-Stokes equations
necessitated the introduction of an adjoint velocity field to enable the derivation of an
optimality condition.

A similar procedure is adopted here to allow the treatment of the case where the prescribed
temperature on 5. is not constant. The techniques of the Calculus of Variations are used to
derive a necessary boundary condition holding on the optimal outer surface for both types of
boundary-value problem described above. This condition is to be solved with the original
boundary-value problem, the adjoint boundary-value problem, and the isoperimetric volume
constraint.

After brief consideration of some simple analytic solutions for spherical B, regular perturbation
methods are applied to the essentially two-dimensional case of an infinitely long prismatic body B
surrounded by a thin insulation layer.

2. BOUNDARY·VALUE PROBLEMS

Let Xi denote Cartesian coordinates in D. Then the temperature field 6(xj) within D satisfies
the classical heat conduction equation for an homogeneous material thus

The following boundary conditions for 6 are considered:

6 = 9(q" r.) (with 9> 0) on 51;

with

(2.1)

(2.2)

(i) 8 =0 on 52
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(2.3)
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or

(ii)
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(2.4)

Here ql> r1 denote curvilinear coordinates specifying a point on 51> e is an infinitely
differentiable function of qj and rJ, 9A is the ambient temperature in the region outside the
insulation layer (for boundary condition (2.4)) and ~ is a constant given by

~ = H*/KP*C,

where H* is the surface conductance, and K, p* and C are the conductivity, density, and
specific heat respectively of the insulation material. The vector n is the unit normal out of D,

The Dirichlet condition (2.3) is somewhat simpler to treat mathematically than the mixed
condition (2.4), but the latter condition is the more realistic of the two for most purposes, since
it represents Newton's Law of Cooling which may be used to approximate many cooling laws
(see, Carslaw and Jaeger[4]). In practice it is difficult to impose a temperature on a surface,

The boundary condition

n' Ve =constant on 5c

may also be imposed. It represents a constant heat flux through 5," everywhere on 5c. The
problem of minimising the heat loss from B then reduces to the well known isoperimetric
problem of minimising the surface area of 52 while keeping the volume of D fixed, and so it is
not considered further here.

3. OPTIMALITY CONDITIONS

A necessary condition for minimum rate of heat loss from B through 51 is now sought by
the methods of the Calculus of Variations. The variations of the surface 52 and temperature field
eare subject to the isoperimetric constraint

JD dV = Vo=const., (3.1)

and the boundary-value problem under consideration, i.e. either (i) the Dirichlet problem (2.1).
(2.2) and (2.3) or (ii) the Mixed problem (2.1), (2.2) and (2.4). Denoting the optimal solution by
the subscript"0", a weak variation about it is considered as follows:

(2) (2)

Xi = X oi(q2, r0 +e!(q2, r2)noJq2, r2) + a(e) on $.,0'

(3.2)

0.3)

Here 0 < e ~ 1, and it is assumed that e and eo may be analytically continued into D U Do
while still satisfying the appropriate boundary-value problem over D or Do. Equation 0.3)
describes a variation of the surface 52 about the optimal surface 520, The variables q," and r," are

(2)

curvilinear coordinates on 52Q such that Xi::: X oi(q2, r2) are Cartesian coordinates of a point P
(2)

on 52Q. The quantities X i are the Cartesian coordinates of the point on 52 corresponding to that
point P on 52Q. The function ! is of the order of a typical length scale of B at most and is a
differentiable function of q2 and r2' The components noi of the unit normal no on 520 out of Do
are also assumed to be differentiable functions of q2' r2' In terms of f the isoperimetric
constraint (3.1) is

J f d5 = O.
520

0.4)
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For any solution 8, D neighbouring the optimal solution the rate of heat loss Q from B
through S. is given by the functional 1[8; D] where

Q=I[8;D]=K ( n·V8dS.
lSI

(3.5)

Substituting the variations (3.2) and (3.3) into equation (3.5) and defining 41 as 1[8;
D] - 1[80 ; Do], the result

(3.6)

follows immediately. If 520 exists and satisfies the above smoothness conditions, the coefficient
of e in eqn (3.6) must vanish for all variations (3.2) and (3.3) satisfying condition (3.4). It
remains to manipulate the r.h.s. of eqn (3.6) to obtain this necessary condition in terms of 80

and 520,

At this stage it becomes necessary to treat the Dirichlet and Mixed boundary-value
problems separately.

(i) Dirichlet problem
If <f> is defined as any twice differentiable function in Do and the integral functional L[<f>, 8\] is

formed by the definition

(3.7)

then L[<f>, 8.] = 0, since V28, vanishes in Do because 8 satisfies eqn (2.1) in Do by assumption.
By use of the Divergence Theorem this equation may be rearranged as

(3.8)

where aDo is the whole boundary surface of Do. The function <f> is now chosen to be the
solution of the "adjoint" boundary-value problem:

Equation (3.8) is then reduced to

V2
<f> = 0 in Do,

<f> = 0 on 520,

<f> = 1 on 51'

(3.9)

(3.10)

(3.11)

(3.12)

Substitution of the weak variations (3.2) and (3.3) into the boundary condition that 8
vanishes on 52 yields

(3.13)

Use of results (3.12) and (3.13) to simplify equation (3.6) yields

i a8 a<f>41 = -EK !-O-dS+o(e).
S20 ano ano
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For the optimal solution 60' S20 the coefficient of E in this expression is to vanish for all
variations f satisfying condition (3.4), so that 60 , cf> and S~O must satisfy the necessary condition

(3.14)

as well as the boundary-value problems (2.1)-(2.3) and (3.9)-(3.11) and the isoperimetric
constraint (3.1). Note that in the case where the prescribed temperature on 5, is constant, (J"

and cf> are linear multiples of each other, so that condition 0.14) reduces to

aB
_0 = const on 5~0,
iJn"

that is the flux on 520 is constant.

(ii) Mixed problem
For this problem cf> is first defined as any twice differentiable function in D and an integral

functional M[ cf>, 6], given by

(3.15)

is formed on 5~. Substitution of the boundary condition (2.4) then yields M[cf>. B] = O. By means
of the Divergence Theorem eqn 0.15) may be rewritten as

(3.16)

This manipulation avoids the consideration of the variation of the normal derivative of 8 on 5,
with varying S,. If cf> is now chosen to satisfy

(3.17)

and

(3.18)

eqn (3.16) may be written as

J n·V8dS= r Vcf>.V8dV+J ~cf>(6-6",)dS.
5, JD 5,

Substitution of the variations (3.2) and (3.3) then yields

EJ n.VB 1 d5=-J. n·V80 dS+ J Vcf>.Vcf>"dV
5, 5, Do

+ Eto Vcf>.V8, dV + EL}Vcf>' V60 dSt J5
20

~cf>(8o - 8",) dS

J [a4> aBo] J+E ~f -(60 -8",)+cf>- d5+E ~<J>8IdS+o(€).
5

20
ano anD 5 20

The relations (2.1), (2.2), (2.4), (3.17) and (3.18) may be used to simplify this expression to

f n,V8,dS=j fV4>.V60 dS+j 6,(no,Vcf>+~4»dS
5, 5 20 5 20

+J fJ.L[~(8-8",)+cf>aa60]dS+O(E). (3.19)
5

2
0 anD no
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If 4J is chosen to satisfy

then eqn (3.19) reduces finally to

Substituting this result into eqn (3.6) yields

~I=EK f f[V4J·V4Jo-2~24J(Oo-OA)]d5+o(E).Js20

817

(3.20)

If 00 , 520 is the optimal solution then the coefficient of E in this expression is to vanish for all
variations f satisfying condition (3.4), so that 00 , 4J and f must satisfy the necessary condition

(3.21)

as well as the boundary-value problems (2.1), (2.2) and (2.4) and (3.17), (3.18) and (3.20), and the
isoperimetric constraint (3.1).

Again it may be observed that in the case where the prescribed temperature on 5\ is
constant, 00 - 0.04. and 4J are linear multiples of each other, so that conditions (2.4), (3.20) and
(3.21) are satisfied when 00 - OA and Do ·VOo are constants on 520 (related by condition (2.4»;
that is, an isothermal surface enclosing the required volume on which the heat flux is constant
(if such a surface exists) satisfies the necessary condition for optimality.

While sufficient conditions for optimality for both the above problems have not as yet been
established, a solution satisfying the appropriate necessary condition as above may be com
pared with other solutions, so that some confidence in it as the optimal solution can be gained.
This procedure has been followed for the solutions of Section 3.5. For any general shape of B
the solution of either of the above optimality problems might be attempted by means of
adapting existing finite element or difference methods for numerical solution of free boundary
problems. The unknown constants in conditions (3.14) and (3.21) and the necessity (for general
prescribed 0 on 51) of solving two boundary-value problems with one common boundary
condition in conjunction appear to be new features. In the present paper attention is confined to
several cases of practical interest which are amenable to solution by analytical means.

4. TWO SPECIAL SOLUTIONS

The special case where B is a sphere of radius a and the prescribed temperature on 51 takes
the constant value a is now considered for both types of boundary condition imposed on 52' If
r is defined as the radial distance of a point from the centre of B, then the surface 51 is given by
r = a in each case.

(i) Dirichlet condition
A solution of problem (2.1)-(2.3), (3.1), (3.9)-(3.11), and (3.14) is:

00 = aa(blr - 1)/(b - a), cP = a(blr - l)/(b - a),

The surface 520 is given by the sphere r = b (where b > a) and the corresponding heat flux out
of 51 is 4'71'Qabl(b - a).

(ii) Mixed condition
A similar spherically symmetric solution of problem (2.1), (2.2), (2.4), (3.1), (3.17), (3.18),

55 Vol. 19. No. 9-E
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(3.20) and (3.21) is as follows:

1. P. CURTIS

0
0
= [ab- 2 + IJ-a(r- I

- b- I)+ IJ-OA(a- t - r- I))/Ib- 2 + IJ-(a- I
- b- i)),

4> = [b- 2+ IJ-(r- I
- b- I))/[b-2+ fl(a- ' - b- ' )l,

11. 0 = fl2(a - 0".,}/b 4[b- 2+ fl(a- I - b- ')]'.

4 , ,
VO :=371'(b-a).

The surface 520 is again given by the sphere r = b (where b > a), and the corresponding heat
flux out of 51 is

The above solutions correspond to those one would intuitively expect from symmetry
considerations.

5. PERTURBATION SOLUTIONS

Regular perturbation methods are now applied to the essentially two-dimensional problem of
an infinitely long prismatic body B. We consider cases where the area of any right cross-section
Ao of Do is small in comparison to the square of the length L of the perimeter CI of the
corresponding right cross-section of B.

It is useful to make a change of coordinates (in tne same way as Banichuk[lJ) as follows. If
P is a point in Ao then it has coordinates (t, s) found by dropping a perpendicular of length t
from P to a point Q on C l at arc-length s measured in the positive sense from some reference
point on CI• The radius of curvature of C1 at Q is denoted by p(s), and 520 is given in terms of t
and 5 by t = h(s). The area of A o is 5(0).

(i) Dirichlet problem
Problem (2.1)-(2.3), (3.1), (3.9)-(3.10 and (3.14) may be first written in terms of t and sand

then non-dimensionalised by writing

Dropping overbars it becomes:

where T:= 1+ fltp-I;

0:= e(s), </> = 1 on t = 0,

0:= O. 4> =0 on t = h(s),

{I + e/h/(l + e\hp-I)-I}Ot<P, = A on t:= h(s).

fLh

T dt ds := 1. (5.1 )

The subscripts t and s denote differentiation with respect to those variables. The term in
brackets on the I.h.s. of the optimality condition arises since the normal on the optimal surface
t '= h(s) differs in general from the normal on C\ for the same value of s.
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A regular perturbation solution is now sought by writing

0= 0(0) +E,O(l) + E,20(2) + .. ,.,

et> =et>(0) +EIet>(I) +E/et>(2) +, ,

h = h(o) +E1h(l) +E1
2h(2) + ,

A = A(0)+ E1A (1)+ £ 1
2A(2) + "

819

and solving the boundary-value problem (5.1) to each order in £1' To the zero-th order this
problem becomes

0(0) =e(s), et>(0) = I on t =0,

0(0) = et>(0) =0 on t = h(O)(s),

0~0)et>~0) == A(0) on t == h(O)(s),

f h(O)(s) = 1.

The zero-th order solution is

0(0) = - J{8(s)}1I2t +8(s),

et>(o) = - J{8(s>r l12 t + 1,

hID) ={8(s)}1/2r ', A(0) =J2,

where

J = f {8(s)}W ds.

Hence to the lowest order the optimal thickness is proportional to the square root of the
temperature difference between the inner and outer surfaces, and does not depend on the radius
of curvature of C1, The above answer can also be obtained by making the appproximate
assumption that the heat ftux at any point on 51 is proportional to 8(s)(h(s)r l

.

The first-order problem is

01:) =- oIO)p-t, et>\:) = - <t>\O)p-l,

0(1) = et>(I) = 0 on t = 0,

0(1) =- h(l)O~O), et>(I) =- h(\)<t>\o) on t = hID),

e~O)et>~1) + e\I)et>\O) = A(I) on t = hID),

f (h(l)+¥h(0»2p-l)dS=0.

This has the solution

6(1)= ~J e'12t2p-l-e tp-I,

et>(1) = ~ J 8- 1I2t 2p-I - tp -I,

h(l)= -!er2p-l, ,\(1)=0,
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Thus to the first order the optimal non-dimensional solution for h is

(5.2)

The non-dimensional minimum rate of heat loss from B per unit length in a direction parallel to
the generators of the prism B is

E,IJ2 +f 8(s)p-\s) ds + O(EI)' (5.3)

It may be observed from eqn (5.2) that the optimal thickness increases with increasing p. Result
(5.3) may be compared with the value of the flux corresponding to the solution where h(s) is
everywhere constant (such that the right cross-sectional area of D is still S(o»). To the zero-th
order this (non-dimensional) value is

E,I f 8(s) ds,

which is greater or equal to E,IJ2 with equality if and only if 8(s) is a constant by Schwarz's
Lemma. In this special case it may easily be shown that the heat flux values corresponding to
the two above solutions are the same up to O(EI~' The perturbation procedure may be
continued to higher orders. In particular the solutions up to second order for the optimal and
"constant h(s)" solutions can be compared for the case of constant 8(s) on SI> confirming that
the greater heat loss corresponds to the latter solution

In conclusion the optimal solutions for h(s) and the rate of heat loss per unit length along B
are presented in terms of the original dimensional variables:

h(s) = S(0){8(s)f/2r ' - ~{S(01}28(s)r2p-I(S) + O({S(OYL-5),

Q= KJ 2{S(01r l + K LL 8(s)p -I(S) ds + O(S(O)K'"L -2),

where

(ii) Mixed problem
As for the Dirichlet Problem, problem (2.1), (2.2), (2.4), (3.1)-(3.18), (3.20) and (3.21) may be

rewritten in terms of t and s and then non-dimensionalised by writing

EI = S(O)L -2, H =:: ElL, h =:: Hh, t =Hi', s =:: Ls,

80 ="'ii, 8A= "'8A, e =",e, 1> = 4>, K =:: K . 1,

p = Lp, 1..0 ="'H-2i:, IJ. =:: H-l
,;..

Dropping overbars it becomes:

(T8,), + EI2(rI0,), = 0, (T1>t) + E/(r l1>,), = 0,

T = 1+ Elt/p,

0= e(s), 1> = 1 on t =:: 0,

(1 +Et2h/rI/2(8r +EI
2h,8,) + IJ.(O - 0A) =:: 0 on t = h,

(1 +E)2h/r ll2(1)t + E}2h,1>') + }Jo1> =0 on t = h,

8rcP, + E/(1 + Elh/P)-28,cP, - 21J.2(8 - 8A)cP =- A on t = h,

fLk

T dt ds = 1. (5.4)
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The terms in h. again arise because the normals to the optimal surface t = h(s) and Ct are not
in general the same for a given value of s.

A perturbation solution is sought by writing

8 = 8(0)+ E18(!) + ,

</> = </>(0)+ E,</>(l) + ,

h = h(o)+ Eth(l) + ,

A= A(o)+ EIA(I)+ ,

and solving the boundary-value problem (5.4) to each order in Et. The zero-th order problem is

8~~) = </>~~) = 0,

8(0) =8(s), </>(0) =1 on t =0,

8~0) + 1£(8(0) - 8,,) =0 on t::= h(O)(s),

</>;0) + 1£</>(0)::= 0 on t = h(O)(s),

8~0)</>~0) - 21£ 2(8(0) - 0,,)</>(0) =- A(0) on t::= h(O)(s),

f h(o)(s) ds = 1.

This has the solution

8(0) = -{9(s) - 8,,}1I2Jt(l +1£-lr l +9(s),

</>(0)::= _ {9(s)- 8"r t12Jt(1 + 1£-Ir l + 1,

h(o)::= - 1£ -I +(l +1£ -1){8(s) - 8,,} lI2r"
A(0) = J2(1 + 1£-tr2,

where

Thus to zero-th order h(O)(s) +1£ -I is linearly dependent on the square root of the difference
in temperature between the inner surface Sj and the region exterior to the body and insulation
layer.

The first order problem is

8~:) = - 8~0)p-t, </>~:> = - </>~O)p-I,

8(1) = 0, </>(1) =0 on t =0,

8~1) =- 1L(8(\) + h(\)8~0~ on t =h(O),

</>~l) = -IL(</>(\) + h(l)</>~o~ on t = h lo>,

8~0)</>~1) + 8~1)</>~0) - 21£ 2{</>(0)8(l) +</>(1)(8(0) - 8,,)} - 2h(l)1L 2{<f>~0)( 8(0) - 8,,) + </>(O)8~0)}

= - Amon t = h(O),
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The first order non-dimensional solution is of the form

II) Ie) 7 -I D
<t> == - 2 0(5 t-p + 1(5)t,

AIII == - (2R + M)1i 3J 2N- 1(I + lit',

h(l) == [p -'(h I0»)2(3 +2Iih(O') - N- 1(2R +M)]/2(2Iih(O) - 1).

Here

R == f ~ (h(OYp-' ds,

M == f p-l(h(0»2(3 + 2IihIO»(2Iih(O)-!f1 ds,

and

The functions Ao(s), C(s), B1(s) and DI(s) are given by

Ao(s) == - {E)(s) - 8A }(1i -I + h,01r',

Co(s):= - (Ii -I + hlo1r l
,

B,(s) = Ao(S)[~h(O'p-I(2 + Iih'O)-1i -lh lll](1 + Iih(Olr l
,

D,(s) = Co(S)U h(O)p-\2 + Ii h'OI) - Ii -Ihl/)]O + Iih(O»-'.

It follows that the optimal flux per unit length along B in non-dimensional form is given by

With substantial labour the solution may be continued to higher orders, the procedure
becoming increasingly lengthy. As for the Dirichlet problem, the O(e,l) term does not depend
on the curvature p of $1> which enters at the next order. Comparisons with the constant
thickness solution, analogous to those described above for the Dirichlet problem, have been
made up to the first order solution with similar outcomes.

For completeness the dimensional expressions for the thickness and the rate of heat loss per
unit length Q are now presented:

where

and
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Q= KJ 2(5(OJ+ LIL-1r l+ KLL IL{8(s)- 6A}(1 + ILh<OJrIUhIOJp-I(2+ ILh(O»- S<O)ILh(l)L-2] ds

+ O(K'I'5(oJL-2).

Here J, R, M and N are the dimensional forms of the integrals introduced above.

6. CONCLl SION S

The problem of minimising the rate of loss of heat from a body surrounded by an insulation
layer of given volume by optimally shaping that layer has been approached by means of the
techniques of the Calculus of Variations extended to variable domains. The introduction of the
appropriate "adjoint" boundary-value problem for each type of boundary condition considered
has enabled the derivation of a necessary (transversality) condition holding on the optimal
surface in each case. The optimal solution is then in principle given by solving the governing
heat-flow and adjoint boundary-value problems together with this necessary condition and the
isoperimetric volume constraint.

Solutions have been derived for special cases where the body is spherical and the
temperature on its surface is constant, and also for the two-dimensional case with layer
thickness small in comparison to a typical length scale of the body. In the general case a
numerical solution procedure would appear to be required. All surfaces have been assumed
sufficiently smooth, and the temperature on the body surface has been assumed differentiable
on that surface. Other cases are on interest-for example a cube has a discontinuous normal,
and there may be situations where the temperature on 5\ is not differentiable. The perturbation
procedure of Section 5 is not valid in these cases, and it is hoped to investigate them further.
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